

Brief CV

Name	Vinogradov			РНОТО
	Gennady	中文名		
	Pavlovich			
Gender	male	Title	Professor, Doctor	
		(Pro./Dr.)	of technical	la a la
			Sciences	
Position (President)	Professor,	Country	Russia	
	member of the			
	Russian			TAL THE
	Association of			
	artificial			
	intelligence.			
University/Department	Department of Informatics and applied mathematics			
Personal Web Sites	absents			
	subjective choice, distributed artificial intelligence, theory of active systems, theory			
Research Area	of distributed artificial intelligence, theory of decision-making, theory of			
	multi-agent systems.			

Brief introduction of your research experience:

Human behavior (hereinafter goal-oriented agent - GA) is the result of man's cognitive activity. In psychology cognitive activity is regarded as a process of forming a mental image (the result of conception) and a model of cognizable and analyzed objects, processes, phenomena. According to a model formed and based on the mental sets, rules, customs, past experience and knowledge a person ideates his attitude to the observable and analyzable. Then, depending on this attitude and the assessment of the object adequacy to the result of mental image and analysis, a person constructs his behavior and develops the program of his actions beginning from participation (or fractional participation) to a complete non-participation in the events, processes, phenomena which he considers important. Therefore, one possible approach to overcome shortcomings of traditional methods of describing the agent behavior in organizational systems is a rational behavior characteristics used in psychology, sociology, etc. For example we introduce parameter r which characterizes the type of agent, with $r \in B$ (r might be termed an agent characteristic). The objective agent function f depends on the ambient environment $\theta \in \Omega$, performance $o \in A$ based on the agent mode of action $c \in C$, centrogenous control $u \in U$ and the type of agent r. Following the hypothesis of agent' rational behavior, the agent tries to get a result $o^* \in A_0$ which maximizes his objective function

 $o^* = Arg \max f(o, u, c, \theta, r); o \in A, c \in C$.

This permits to speculate about function f regarding $s = F(\theta \in \Omega_0, z = G(o) \in A_0, q = H(c) \in C)$. Such an approach is to use some idealized construct (model) that describes the behavior of GA in decision-making.

Goal-oriented behavior is always associated with the decision which is made in the goal-oriented condition. Goal-oriented condition consists of the following components:

- Behaver making a decision (GA), $k \in K$;
- Decision environment (*S*), which refers to the set of elements and their intrinsic properties, (changes in any of them can cause or produce a change in the condition of goal-oriented decision;
- Available modes of action C_{ij}^k , $j = \overline{1, n}$ of the k-th agent, which are at his disposal and can be used to achieve the *i*-th result (also called alternatives);
- Possible results under environment (S) (significant for GA) O_i^k , $i = \overline{1, m}$.
- The method of estimating the properties of the obtained data as a result of the action mode decision;
- Restriction to the output variables and control actions that reflect the requirements caused by the goal-oriented decision.
- Subjective decision making model, which is a set of relations describing the dependence of control actions, parameters, and disturbances on the output variables.

Let us introduce measures for the above-described components. They will be used to estimate the goal-oriented condition.

*****All the columns need to be filled in.